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Normal Modes for Massive Spin 1 Equation in
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The general scheme of the massive spin-1 equation in curved space-time with associated
conserved current is considered. A properly covariant scalar product between solutions
of the spin-1 equation is defined in a standard way by means of the conservation
of the current. The scheme is specialized to the Robertson–Walker space-time where
solutions of the spin-1 equation have been previously determined. There results, in case
of flat Robertson–Walker space-time, the automatic ortho-normalization property of the
solutions, that therefore represent a set of normal modes.
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1. INTRODUCTION

The study of the spin 1 field equation in concrete examples of curved space-
time is a subject of interest for different physical interpretations and applications.
We recall that in the massless case the spin 1 field equation can be interpreted in
terms of source free electromagnetic field (Penrose and Rindler, 1984) and in the
massive case in terms of Proca fields (e.g. Illge, 1993). In view of a quantization of
the theory, also the determination of the normal modes (for instance by the proce-
dure induced by current conservation) is an argument of interest. In the massless
case the spin 1 equation has been solved in the context of the Robertson–Walker
space-time (Zecca, 1996a) and the corresponding electromagnetic interpretation
given (Zecca, 1996b). The Proca fields interpretation has been discussed in Zecca
(2005) by using the solution previously obtained in the massive case Zecca (2005).

In the present paper attention is devoted to the determination of the normal
modes for spin 1 equation in Robertson–Walker space-time. To that end the en-
larged scheme proposed by Illge (1993) in terms of four suitably related spinor
fields is adopted as the staritng point. The solution of the equation previously
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determined is preliminary improved. In particular some further properties of the
radial solutions and of the separated time equations are established.

A scalar product between solutions compatible with the principle of covari-
ance in general relativity is then considered. It is defined in a general standard
way by using a conserved current. In the flat space case the solutions of the spin 1
equation, that can be determined explicitly in terms of confluent hypergeometric
functions, come out to be automatically orthogonal in the given scalar product.
This fact is directly verified by using the properties of the conluent hypergeometric
and spherical Bessel functions. It remains open the problem of the analogous calcu-
lation for the open and closed Robertson–Walker space-time where the analytical
expression of the radial solutions has not yet been determined.

2. THE GENERAL EQUATION FOR THE SPIN 1 FIELD
IN CURVED SPACE-TIME

It is usefull to first formulate the spin 1 equation in curved space-time fol-
lowing the scheme proposed by Illge (1993).

Accordingly the four spinor φAB, χAẊ, θAẎ , ξẊẎ with φAB = φBA, ξẊẎ =
ξẎ Ẋ, are required to satisfy the equations

∇AẊφA
B = iµ�χBẊ, ∇AẊχẊ

B = −iµ�φAB (1)

∇AẊθ
Ẋ

B = −iµ�ξAB, ∇AẊξ
A

B = iµ�θẊB (2)

where 2µ2
� = m2

0,m0 the mass of the particles of the field. The Eq. (2) have been
directly written for (θ, ξ ) to point out that the system relative to (θ, ξ ) is the
complex conjugate of that for (φ, χ ).

A general aspect of the scheme of Eqs. (1) and (2) is that the expression

JAẊ(�,�′) = φA
Bθ

ẊB + χẊ
B ξ

AB −
(
φ

Ẋ

Ẏ θAẎ + χA
Ẏ
ξ Ẏ Ẋ

)
(3)

(� ≡ (φ, χ ),�′ ≡ (θ, ξ )) can be interpreted as a current that is conserved

∇AẊJAẊ(�,�′) = 0 (4)

This can be checked from the validity of Eqs. (1) and (2) and their complex
conjugate. (One could also see that the term in parenthesis in Eq. (3) is separately
conserved.)
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3. SOLUTIONS OF THE SPIN 1 EQUATION IN
ROBERTSON–WALKER SPACE-TIME

It is possible to solve the Eq. (1) in the Robertson–Walker space-time whose
line element is

ds2 = dt2 − R(t)2

[
dr2

1 − ar2
+ r2(dθ2 + sin θ2dϕ2)

]
, a = 0,±1. (5)

Indeed the Eq. (1) can be solved by generalizing the separation method used to
integrate the massless case (Zecca, 2005). The solution of Eq. (1) has therefore
the form

φ00 = α(t)φ0(r)S(0)(θ, φ), χ00′ = A(t)φ1(r)S(1)(θ, φ) = −χ11′

φ01 = φ10 = α(t)φ1(r)S(1)(θ, φ), χ10′ = A(t)φ2(r)S(2)(θ, φ) (6)

φ11 = α(t)φ2(r)S(2)(θ, φ), χ01′ = −A(t)φ0(r)S(0)(θ, φ),

where the angular functions result to be S(i) ≡ S
(i)
lm(θ, ϕ) = Silm(θ )eimϕ(i =

0, 1, 2). The Silm’s (l = 0, 1, 2, . . . ; m = 0,±1,±2, . . .) have the properties
S1lm(θ ) = S1l−m(θ ), S0lm(θ ) = −S2l−m(θ ), are essentially given by the Legendre
functions or by the Jacobi polynomials and their expressions can be found in Zecca
(1996a). Accordingly they can be assumed to be already ortho-normalized

∫
d	S

(i)
lm(θ, ϕ)S(i)�

l′m′(θ, ϕ) = δll′δmm′ (i = 0, 1, 2) (7)

The time dependence of the solutions of Eq. (1) is governed by the functions α, A,
solutions of the coupled equations

ikα = −α̇ R − 2αṘ + im0 RA, ikA = Ȧ R + AṘ − im0 Rα. (8)

By combining the Eq. (8) for different values of the separation constant one can
derive the equation

i(k − k′)(Akα−k′ − A−k′αk) =
(

R
d

dt
+ +3Ṙ

)
(Akα−k′ + A−k′αk). (9)

In case k = k′, a simple integration gives

R3 (Akα−k + A−kαk) = constant = D (10)

a property of the time solutions that will be usefull in the following. One has also

αk(t ; −µ�) = α−k(t ; µ�), Ak(t ; −µ�) = A−k(t ; µ�) (11)

that follow by taking into account the dependence on the mass of the particle into
Eq. (8).
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For what concerns he radial solutions φ0, φ2, they are such that φ0
∼= φ2 while

φ0, φ1 satisfy the equations

r(1 − ar2)φ′′
0 + (4 − 5ar2)φ′

0

+
[

(k2 − 3a)r + 2 − λ2

r
+ 2ik(1 − ar2)

1
2

]
φ0 = 0 (12)

r(1 − ar2)φ′′
1 + (4 − 5ar2)φ′

1 + [
(k2 − 4a)r + 2 − λ2

r

]
φ1 = 0.

The parameters k and λ are the time and angular separation constants, respectively,
and it comes out λ2 = l(l + 1). The separated radial equations are difficult to be
solved in general except for the flat space case a = 0 where solutions are explicitly
given by

φd (r) = rl−1eikrM(l + 2 − d; 2l + 2; −2ikr), d = 0, 1 (a = 0) (13)

M the confluent hypergeometric function. The expression of the radial solutions
of the flat case can be further simplified. From a special case of the confluent
hypergeometric function (Abramovitz and Stegun, 1970) one has

φ1k
∼= 1

r3/2
Jl+1/2(−kr) (14)

∼= 1

r
jl(−kr) (15)

the jl’s the spherical Bessel functions, solutions of the free particle radial
Schrödinger equation in polar coordinates. As to φ0k one has

φ0k
∼= Jl+3/2(−kr) −

(
2i − 1

kr

)
Jl+1/2(−kr) − Jl−1/2(−kr) (16)

∼= jl+1(−kr) −
(

2i − 1

kr

)
jl(−kr) − jl−1(−kr) (17)

∼=
[
−i

d

dz
− i

z
+ 1

]
jl(z) (z = −kr) (18)

To obtain Eq. (16) the second derivative and then a special case of the confluent
hypergeometric function has been considered. The Eq. (18) follows from the
recurrence relations of the spherical Bessel functions involving their derivatives
(Abramovitz and Stegun, 1970).

4. THE NORMAL MODES

An argument of interest in view of a quantization of the spin 1 field in
curved space-time is the determination of the normal modes (e.g. Birrell and



Normal Modes for Massive Spin 1 Equation in Robertson–Walker Space-Time 1985

Davies, 1982). By the conserved current in hand this can be done by applying to the
solution previously determined a standard procedure. From current conservation
and Gauss’ theorem (Hawking and Ellis, 1973) the expression

(�,�′) =
∫

d3x |g|1/2 Jα(�,�′)nαd� (19)

=
∫

t=t0

d3x |g|1/2 σ t
AA′J

AA′
(�,�′) (20)

is independent of the Cauchy surface �. In the Robertson–Walker space-time �

has been chosen to be the surface t = t0 with normal unit vector nα = (1, 0, 0, 0).
The expression of the sigma matrix is σ t

AA′ = diag{1/2, 1/2}. It can be obtained
in a standard way (e.g. Chandrasekhar, 1993) from the null tetrad frame that was
employed to obtain the solution of the Eq. (1) (Zecca, 1996a,b, 2005, 2006).

To calculate exlicitly the expression (15) on the solutions given in the previous
section we note that (θ,−ξ ) satisfy the same equation satisfied by (φ, χ ) with the
substitution µ� → −µ�. We choose therefore �′ ≡ (θ ′, ξ ′) so that

θ
ẊA

k′l′m′ ≡ χAẊ
k′l′−m′ − ξ

AB

k′l′m′ ≡ φAB
k′l′−m′ . (21)

where φ, ξ have the structure given in Eq. (6) with now α = αk(t ; −µ�), A =
Ak(t ; −µ�). By taking into account the properties of the Silm functions and the
Eqs. (11), (20) and (21) one finally gets

(�klm,�k′l′m′) = − R3

√
2

(Akα−k′ + A−k′αk)
∫ ∞

0

r2dr√
1 − ar2

∫
d	 (22)

×
[
2φ1klφ1k′l′S

(1)
lm S

(1)
l′m′ + φ2klφ2k′l′S

(2)
lm S

(2)
l′m′

+φ0klφ0k′l′S
(0)
lm S

(0)
l′m′

]
+ c.c.

= − R3

√
2

(
Akα−k′ + A−k′αk

) ∫ ∞

0

dr r2

√
1 − ar2

[
2φ1klφ1k′l′ (23)

+φ2klφ2k′l′ + φ0klφ0k′l′
]
δll′δmm′ + c.c.

where also Eq. (7) has been taken into account. It seems difficult to calculate in
general the integral in (23). However this is possible in the flat space case. Indeed,
by taking into account the linearity of the radial equations, consider the functions√

l(l + 1)φ1, kφo, kφ2 with φo = φ2, where φ1, φ0 are given by Eqs. (15) and
(18). Then

∫ ∞

0
drr2

[
2l(l + 1)φ1klφ1k′l + kk′φ0klφ0k′l + kk′φ2klφ2k′l

]
(24)
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= 2kk′
∫ ∞

0
drjlkjlk′r2 − 2

∫ ∞

0
dr jlk

[
j ′′
lk′r

2 + 2r j ′
lk′ − l(l + 1)jlk′

]
(25)

= 2kk′
(

1 + k′

k

) ∫ ∞

0
jl(−kr)jl(−k′r)r2dr (26)

= 2π δ(k − k′) (27)

(It has been set jlk = jl(−kr), j ′
lk = djl(−kr)/dr). In Eq. (25) an integration by

parts of a term r (jlkjlk′)′ has been already performed exactly. Also an integration by
parts of the term 2r2(j ′

lkj
′
lk′) has been done and its contour term neglected because

r2(jlkj
′
lk′)

r→∞−→ cos[kr + (l + 1)π
2 ] sin[k′r + (l + 1)π

2 ] that vanishes in the sense
of the distribution theory for r → ∞ as it can be easily seen by reducing to sum
of exponentials. The Eq. (26) follows by the fact that jl is solution of the free
particle radial Schrödinger equation (e.g. Merzbacher, 1970). To obtain Eq. (27),
the closure relation of the spherical Bessel functions has been considered (Arfken
and Weber, 1995).

Therefore, by properly choosing the constant D in Eq. (10), one has

(�klm,�k′l′m′) = δmm′δll′δ(k − k′) (28)

that ensures that the �’s satisfy the defining properties of the Normal Modes.
As a conclusion, possible normal modes have been determined for the massive

spin-1 equation in the Robertson–Walker space-time. It lacks the determination
of the normal modes and their properties in the open and closed space-time. This
seems a difficult task both by proceeding in the analytical determination of the
radial solutions, both by trying to employ the radial equations themselves in the
calculation of the integral in (23).
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